Improved log-Sobolev inequalities, hypercontractivity and uncertainty principle on the hypercube

نویسندگان

  • Yury Polyanskiy
  • Alex Samorodnitsky
چکیده

We develop a new class of log-Sobolev inequalities (LSIs) that provide a nonlinear comparison between the entropy and the Dirichlet form. For the hypercube, these LSIs imply a new version of the hypercontractivity for functions of small support. As a consequence, we derive a sharp form of the uncertainty principle for the hypercube: a function whose energy is concentrated on a set of small size, and whose Fourier energy is concentrated on a small Hamming ball must be zero. The tradeoff we derive is asymptotically optimal. We observe that for the Euclidean space, an analogous (asymptotically optimal) tradeoff follows from the sharp form of Young’s inequality due to Beckner. As an application, we show how uncertainty principle implies a new estimate of the metric properties of linear maps F2 → F2 .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Logarithmic Sobolev Inequalities in Discrete Settings

Motivated by the rate at which the entropy of an ergodic Markov chain relative to its stationary distribution decays to zero, we study modified versions of logarithmic Sobolev inequalities in the discrete setting of finite Markov chains and graphs. These inequalities turn out to be weaker than the standard log-Sobolev inequality, but stronger than the Poincare’ (spectral gap) inequality. We sho...

متن کامل

Hypercontractivity and Log Sobolev inequalities in Quantum Information Theory

Quantum Information Theory (QIT) is a highly interdisciplinary field, and many different areas of mathematics have played key roles in its development. Recently the topics of hypercontractivity (HC) and logarithmic Sobolev (LS) inequalities have found applications in a variety of problems within QIT, and this has led to a growth of interest among researchers in the field. The purpose of this wo...

متن کامل

Strong Logarithmic Sobolev Inequalities for Log-Subharmonic Functions

We prove an intrinsic equivalence between strong hypercontractivity (sHC) and a strong logarithmic Sobolev inequality (sLSI) for the cone of logarithmically subharmonic (LSH) functions. We introduce a new large class of measures, Euclidean regular and exponential type, in addition to all compactly-supported measures, for which this equivalence holds. We prove a Sobolev density theorem through L...

متن کامل

Hypercontractivity for Log–subharmonic Functions

We prove strong hypercontractivity (SHC) inequalities for logarithmically subharmonic functions on R and different classes of measures: Gaussian measures on R, symmetric Bernoulli, symmetric uniform probability measures, as well as their convolutions μ1 ∗μ2 if one of the convolved measures is compactly supported. A slightly weaker strong hypercontractivity property holds for any symmetric measu...

متن کامل

Hypercontractivity of Hamilton–jacobi Equations

– Following the equivalence between logarithmic Sobolev inequalities and hypercontractivity showed by L. Gross, we prove that logarithmic Sobolev inequalities are related similarly to hypercontractivity of solutions of Hamilton–Jacobi equations. By the infimum-convolution description of the Hamilton–Jacobi solutions, this approach provides a clear view of the connection between logarithmic Sobo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1606.07491  شماره 

صفحات  -

تاریخ انتشار 2016